Dynamics of cell shape and forces on micropatterned substrates predicted by a cellular Potts model.

نویسندگان

  • Philipp J Albert
  • Ulrich S Schwarz
چکیده

Micropatterned substrates are often used to standardize cell experiments and to quantitatively study the relation between cell shape and function. Moreover, they are increasingly used in combination with traction force microscopy on soft elastic substrates. To predict the dynamics and steady states of cell shape and forces without any a priori knowledge of how the cell will spread on a given micropattern, here we extend earlier formulations of the two-dimensional cellular Potts model. The third dimension is treated as an area reservoir for spreading. To account for local contour reinforcement by peripheral bundles, we augment the cellular Potts model by elements of the tension-elasticity model. We first parameterize our model and show that it accounts for momentum conservation. We then demonstrate that it is in good agreement with experimental data for shape, spreading dynamics, and traction force patterns of cells on micropatterned substrates. We finally predict shapes and forces for micropatterns that have not yet been experimentally studied.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of Cell Ensembles on Adhesive Micropatterns: Bridging the Gap between Single Cell Spreading and Collective Cell Migration

The collective dynamics of multicellular systems arise from the interplay of a few fundamental elements: growth, division and apoptosis of single cells; their mechanical and adhesive interactions with neighboring cells and the extracellular matrix; and the tendency of polarized cells to move. Micropatterned substrates are increasingly used to dissect the relative roles of these fundamental proc...

متن کامل

Chitin Nanofiber Micropatterned Flexible Substrates for Tissue Engineering†

Engineered tissues require enhanced organization of cells and extracellular matrix (ECM) for proper function. To promote cell organization, substrates with controlled micro- and nanopatterns have been developed as supports for cell growth, and to induce cellular elongation and orientation via contact guidance. Micropatterned ultra-thin biodegradable substrates are desirable for implantation in ...

متن کامل

The biophysical nature of cells: potential cell behaviours revealed by analytical and computational studies of cell surface mechanics

BACKGROUND The biophysical characteristics of cells determine their shape in isolation and when packed within tissues. Cells can form regular or irregular epithelial structures, round up and form clusters, or deform and attach to substrates. The acquired shape of cells and tissues is a consequence of (i) internal cytoskeletal processes, such as actin polymerisation and cortical myosin contracti...

متن کامل

Micropatterned surfaces for control of cell shape, position, and function.

The control of cell position and function is a fundamental focus in the development of applications ranging from cellular biosensors to tissue engineering. Using microcontact printing of self-assembled monolayers (SAMs) of alkanethiolates on gold, we manufactured substrates that contained micrometer-scale islands of extracellular matrix (ECM) separated by nonadhesive regions such that the patte...

متن کامل

Effect of adhesion geometry and rigidity on cellular force distributions.

The behavior and fate of tissue cells are controlled by the rigidity and geometry of their adhesive environment, possibly through forces localized to sites of adhesion. We introduce a mechanical model that predicts cellular force distributions for cells adhering to adhesive patterns with different geometries and rigidities. For continuous adhesion along a closed contour, forces are predicted to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 106 11  شماره 

صفحات  -

تاریخ انتشار 2014